Published: Oct 5, 2022
Introduction
Both of depth-first search with/without stack and the breadth-first search work. Once the level to add new nodes is found, just create two new nodes and set those in the tree.
Problem Description
Given the
rootof a binary tree and two integersvalanddepth, add a row of nodes with valuevalat the given depthdepth. Note that the root node is at depth 1.The adding rule is:
- Given the integer
depth, for each not null tree nodecurat the depthdepth - 1, create two tree nodes with valuevalas cur’s left subtree root and right subtree root.cur’s original left subtree should be the left subtree of the new left subtree root.cur’s original right subtree should be the right subtree of the new right subtree root.- If
depth == 1that means there is no depthdepth - 1at all, then create a tree node with valuevalas the new root of the whole original tree, and the original tree is the new root’s left subtree.Constraints:
- The number of nodes in the tree is in the range
[1, 10**4].- The depth of the tree is in the range
[1, 10**4].-100 <= Node.val <= 100-10**5 <= val <= 10**51 <= depth <= the depth of tree + 1
Examples
Example 1
Input: root = [4,2,6,3,1,5], val = 1, depth = 2
Output: [4,1,1,2,null,null,6,3,1,5]
Explanation:
Input:
4
/ \
2 6
/ \ /
3 1 5
Output:
4
/ \
1 1
/ \
2 6
/ \ /
3 1 5
Example 2
Input: root = [4,2,null,3,1], val = 1, depth = 3
Output: [4,2,null,1,1,3,null,null,1]
Explanation:
Input:
4
/
2
/ \
3 1
Output:
4
/
2
/ \
1 1
/ \
3 1
Analysis
As the problem describes, only when depth is 1, it needs a special treatment. The solution taken here is the breadth-first search approach and level order traversal. In each level, the depth is decremented. When the depth becomes 1, create two new nodes and add those to the current parent. The new nodes’ children are current parent’s children.
Solution
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class AddOneRowToTree:
def addOneRow(self, root: Optional[TreeNode], val: int, depth: int) -> Optional[TreeNode]:
if depth == 1:
return TreeNode(val=val, left=root)
queue = [root]
while queue:
q_len = len(queue)
depth -= 1
for _ in range(q_len):
cur = queue.pop(0)
if depth == 1:
left = TreeNode(val=val, left=cur.left)
right = TreeNode(val=val, right=cur.right)
cur.left,cur.right = left, right
if cur.left:
queue.append(cur.left)
if cur.right:
queue.append(cur.right)
if depth == 1:
break
return root
Complexities
- Time:
O(n) - Space:
O(k)– k: number of the nodes in the same level